
A Distributed Protocol for Fractional Stable Paths Problem

Shiva Kintali

College of Computing,
Georgia Institute of Technology,

Atlanta, GA-30332.
Email : kintali@cc.gatech.edu

Abstract

The Border Gateway Protocol (BGP) is currently the only interdomain routing protocol
deployed in the Internet. BGP can be viewed as a distributed algorithm for solving the Stable
Paths Problem (SPP) [4]. Not every instance of SPP has a stable solution. The most general
condition known to guarantee stability of SPP is the absence of dispute wheel, proposed by
Griffin, Shepherd and Wilfong [4]. They also defined the Simple Path Vector Protocol (SPVP),
a distributed algorithm for solving SPP. SPVP is sensitive to timing issues and can diverge even
when a stable solution exists [4].

Recently, Haxell and Wilfong [5] defined a fractional version of SPP and showed that every
instance of fractional-SPP (FSPP) has a stable solution. But their proof was non-constructive.
In this paper, we define ε-stable solution of FSPP and present a distributed protocol that al-
ways converges to an ε-stable solution of an FSPP instance, for any given ε > 0. We define a
game-theoretic model for FSPP and present a relation between ε-Nash and ε-stable solution.

Keywords: border gateway protocol, fractional routing, interdomain routing, path vector
protocol, routing games, stable paths problem.

1

1 Introduction

The Internet consists of smaller networks known as Autonomous Systems. These are subnetworks
of routers that are controlled by selfish and competing economic agents. They establish contracts
(service level agreements) between each other to transit certain traffic to each other. The task
of ensuring connectivity between Autonomous Systems is called interdomain routing. The Border
Gateway Protocol (BGP) is currently the only interdomain routing protocol deployed in the Internet
[8].

1.1 Related Work

Griffin, Shepherd and Wilfong [4] introduced Stable Paths Problem (SPP) to capture the dynamics
of BGP. A stable solution to an SPP is an equilibrium point in which each node is assigned its
locally optimal path to a specific destination node. Routing policies can conflict to cause BGP to
diverge, resulting in persistent route oscillations [9]. Hence, not every instance of SPP has a stable
solution. Griffin, Shepherd and Wilfong [4] introduced the concept of dispute wheels and showed
that the absence of dispute wheels implies solvability of an SPP instance. They also presented a
distributed algorithm (Simple Path Vector Protocol (SPVP)) for solving SPP, and proved that it
can never diverge for an SPP instance that has no dispute wheel. A special case of No Dispute
Wheel is the Gao-Rexford setting ([3, 2]) that depicts the commercial structure underlying the
Internet [6]. Recently, Haxell and Wilfong [5] defined a fractional version of SPP and showed that
all instances of fractional SPP (FSPP) have stable solutions. But their proof was non-constructive.
This leads to an interesting open problem as how to design a distributed algorithm to achieve such
a fractional stable solution.

1.2 Our Results

In this paper, we define ε-stable solution of an FSPP instance and present a distributed protocol
that always converges to an ε-stable solution of an FSPP instance, for any given ε > 0. We define
a game-theoretic model for FSPP and present a relation between ε-Nash and ε-stable solution.

2 SPP and FSPP

2.1 Stable Paths Problem

We denote a network by a simple (no multi-edges and self-loops), undirected and connected graph
G(V,E), where V is a set of n source nodes and a unique destination node d, and E is the set of
edges. All the source nodes attempt to establish a path to the destination node d. For any node u,
N(u) = {w | (u,w) ∈ E} is the set of neighbors (a.k.a peers) of u. A path from s to t is defined as a
sequence of nodes (v1, v2, . . . vk−1, vk), where v1 = s and vk = t and (vi, vi+1) ∈ E for 1 6 i 6 k−1.
Throughout this paper, we assume that all paths are simple i.e., they do not have repeated nodes.
An empty path has no edges and is denoted by φ. Let |P | denote the length of P , i.e., number
of edges in P . Each non-empty path P = (v1, v2, . . . vk−1, vk) can be treated as a directed path
with the edges directed from its first node v1 to its last node vk. We call Pi = (vi, vi+1, . . . , vk) for
1 ≤ i ≤ k a subpath of P . Note that P and Pi have the same last node. In particular, next(P)
denotes the path (v2, . . . , vk). If v2 = vk then next(P) is φ. If P and Q are non-empty paths

2

such that the first node in Q is same as the last node in P , then PQ denotes the path formed by
concatenating these paths. We say that path R ends with path Q if R can be written as PQ. We
call Q as a final segment of R. If Q is non-empty, we call Q as a proper final segment of R. Below
we present the SPP formalism, defined by Griffin, Shepherd and Wilfong [4].

Permitted Paths : Each source node v would like to establish a connection to d only through
one of its trusted paths1 from v to d. We call these trusted paths as permitted paths and denote
them by Pv. Let |Pv| denote the number of permitted paths at node v. We assume that ∀v ∈ V ,
φ ∈ Pv and we do not count φ in |Pv|. If P = (v, v1, v2, . . .vk, d) is in Pv, then the node v1 is called
the next-hop of path P . We assume that Pd = ∅.

Ranking Function : For each v ∈ V , there is a non-negative, integer-valued ranking function
λv (defined over Pv), which represents how node v ranks its permitted paths. If P1, P2 ∈ Pv and
λv(P1) < λv(P2), then P2 is said to be preferred over P1. We assume that λv(φ) = 0 and λv(P) > 0
for each non-empty path P ∈ Pv.

Strictness of the Ranking Function : If P1, P2 ∈ Pv, P1 6= P2 and λv(P1) = λv(P2), then there
is a u such that P1 = (v, u)P ′1 and P2 = (v, u)P ′2. In other words, paths P1 and P2 have the same
next-hop.

SPP Instance : Let P = {Pv | v ∈ V − {d}}. Let Λ = {λv | v ∈ V − {d}}. An instance of the
Stable Paths Problem, I = 〈G,P,Λ〉, is a graph together with the permitted paths and the ranking
functions at each node.

Path Assignment : A path assignment is a function π that maps each node u ∈ V to a path
π(u) ∈ Pu. If a node u is not assigned a path to d then π(u) = φ. The set of choices(π, u) of node
u is

choices(π, u) =
{
{(u, v)π(v) | (u, v) ∈ E} ∩ Pu (u 6= d)
{φ} o.w.

Given a node u, let W be the subset of the permitted paths Pu such that each path in W has a
distinct next hop. Then the best path in W is defined to be

best(W,u) =
{
P ∈W with maximal λu(P) (W 6= ∅)
φ o.w.

Stability : The path assignment π is stable at node u if π(u) = best(choices(π, u), u). The path
assignment π is stable if it is stable at each node u. Any stable path assignment implicitly defines
a tree (not necessarily spanning) rooted at d.

Solvability : The Stable Paths Problem I = 〈G,P,Λ〉 is said to be solvable if there is at least one
stable path assignment for I.

1These paths are inferred from the service level agreements.

3

2.2 Fractional SPP

In this section, we present fractional-SPP (FSPP) introduced by Haxell and Wilfong [5]. An in-
stance of FSPP is same as an instance of SPP i.e., I = 〈G,P,Λ〉. The only difference between SPP
and FSPP is in the definition of their solutions. In a stable solution of SPP, every source node is al-
lowed to have exactly one path to the destination node. In FSPP, nodes are allowed to have multiple
paths to the destination. Nodes can assign non-negative weights to their preferred paths, subject to
the following conditions. As mentioned in [5], these weights can be interpreted as fractional routing.

Feasible Solution : For FSPP, a feasible solution is defined as an assignment of a non-negative
weight w(P) to each path P ∈ Pv, for every v so that the weights satisfy the two properties listed
below. For a non-empty path S, let Pv

S denote the set of paths in Pv that end with the path S.

• Unity condition : For each node v,
∑

P∈Pv

w(P) 6 1.

• Tree condition : For each node v, and each non-empty path S,
∑

P∈ Pv
S

w(P) 6 w(S).

Stable Solution : A stable solution to FSPP is a feasible solution such that for any path Q ∈ Pv,
one of the two following conditions holds:

•
∑

P∈Pv

w(P) = 1, and each P ∈ Pv with w(P) > 0 is such that λv(P) > λv(Q).

• there exists a proper final segment S of Q, such that
∑

P∈ Pv
S

w(P) = w(S), and moreover each

P ∈ Pv
S with w(P) > 0 is such that λv(P) > λv(Q).

3 ε-stable Solution

3.1 ε-stability

Haxell and Wilfong [5] proved that all instances of FSPP have stable solutions. Their proof works
in two stages. In the first stage they show that for any positive constant ε, every instance of FSPP
has an ε-solution. Then they apply a compactness-type argument to conclude that every instance
has an exact solution. Below we define ε-stable solution, which is different from their ε-solution.
Their definition (of ε-solution) is a useful tool in proving that every instance of FSPP has a stable
solution. But ε-solution is not a feasible solution, since it violates tree condition. Our definition of
ε-stable solution is a feasible solution and is motivated by the widely accepted concept of ε-Nash
([1, 10]).

ε-stable Solution : An ε-stable solution to FSPP is a feasible solution such that for any path
Q ∈ Pv, one of the two following conditions holds:

• 1− ε 6
∑

P∈Pv

w(P) 6 1, and each P ∈ Pv with w(P) > 0 is such that λv(P) > λv(Q).

4

• there exists a proper final segment S of Q, such that w(S) − ε 6
∑

P∈ Pv
S

w(P) 6 w(S), and

moreover each P ∈ Pv
S with w(P) > 0 is such that λv(P) > λv(Q).

Note that, when ε = 0, an ε-stable solution is equivalent to a stable solution. Below we present
a relation between ε-Nash and ε-stable solution. Our distributed algorithm is a constructive proof
showing that all instances of FSPP have an ε-stable solution for any given ε > 0.

3.2 ε-Nash vs ε-stable Solution

In this section, we define a game-theoretic model of fractional BGP based on the game-theoretic
model for the integral BGP [7]. The main difference between the game-theoretic models for integral
and fractional BGP lies in the definition of payoffs to the individual players (source nodes in the
network). The ranking function λu defines a valuation function that assigns a non-negative integer
value to the paths in Pu. It represents the preference over the paths to send traffic to the destination
node. Source node u would like to send more (fractional) traffic through a path P with higher λu(P),
subject to the feasibility conditions.

The One-Round Game is a full-information game in which a strategy of a node u is an
assignment of weights w(P) for each P ∈ Pu. Let w(Pu) = {w(P) | P ∈ Pu}. If w(Pu) is not
feasible then u’s payoff is zero. If w(Pu) is feasible, u gets the following payoff :

payoff(u) =
∑

P∈Pu

λu(P)w(P)

The observation below follows from the definitions of stable solution and payoff(u).

Observation : Given the feasible weights w(Pv) for each v ∈ V −{u, d}, payoff(u) is maximized
if and only if the weights w(Pu) are stable.

From this observation, it is easy to see that pure Nash equilibria in the One-Round Game corre-
spond to the stable solutions of the FSPP instance. Now we present the relation between ε-Nash
of the One-Round Game and ε-stable solution of FSPP. Given ε > 0, ε-Nash is a strategy profile
such that no player can gain more than ε in payoff by deviating from his strategy unilaterally.
Similarly, ε-stable solution is an assignment of weights to the paths such that no source node can
increase (unilaterally) the weight of a preferred path by more than ε, without violating the feasibil-
ity conditions. In terms of payoffs, a source node u cannot gain more than ελu(P) by unilaterally
changing w(P). In other words, no source node can gain more than εΓ in payoff by unilaterally
changing the weights of (one or more) its preferred paths, where Γ is defined as follows :

Γ = max
v∈V−{d}

{|Pv| · (max
P∈Pv

{λv(P)})}

Hence, an ε-stable solution corresponds to (εΓ)-Nash in the One-Round Game.

5

4 Fractional Path Vector Protocol

As mentioned earlier, not every instance of SPP has a stable solution. Also, the Simple Path
Vector Protocol (SPVP) is sensitive to timing issues and can diverge even when a stable solution
exists [4]. On the other hand, every instance of FSPP has a stable solution [5]. Our protocol for
FSPP always converges to an ε-stable solution, for any given ε > 0. In our protocol, the messages
exchanged between neighbors are fractional paths. Hence, we call it Fractional Path Vector Protocol
(fractional-PVP).

4.1 The Protocol

As in SPVP, we use a message processing framework which employs a reliable FIFO queue of
messages for communication between peers. We model logical time t with discrete values 0, 1, 2,
At each discrete time step, one or more nodes with a waiting message runs the update(u) program.
This models the asynchronous nature of the Internet. Every node is eventually activated when
there is an unprocessed message from one of its neighbors.

We add an artificial node d′, connected to the destination node d via a direct link (edge (d, d′)).
Node d′ is always idle and cannot receive or send any messages. We augment all the preferred paths
by adding the edge (d, d′). Throughout this section, we assume that all the preferred paths are from
the source nodes to d′. Let Z represent the path consisting of a single edge (d, d′). Note that Z is
a proper final segment of every other permitted path. When a node u changes the weight w(P) of
a path P ∈ Pu, it communicates this change to all its peers. Let P = (v1, v2, . . . , vk, d, d

′), where
v1 = u, be a path from a node u to the node d′. Let W(P) = (w(P1), w(P2), . . . , w(Pk), w(Z)),
where Pi = (vi, vi+1, . . . , vk, d, d

′) is a subpath of P . The messages sent by node u to its peers are
of the form 〈P,W(P)〉, representing the fractional weights of the subpaths of P .

Protocol for the destination node d : In our protocol, the destination node’s behavior is dif-
ferent from that of the source nodes. This is in contrast with SPVP, where all nodes run the same
program. Destination node d informs its neighbors that it is available fractionally. At time t, node
d updates w(Z) to tε and sends the message 〈Z, (w(Z))〉 to its neighbors. This is repeated until
w(Z) = 1. This behavior is outlined in the program increment(d). We assume that ε = 1/δ, where
δ is an integer. We assume that w(Z) is initialized to 0. Note that, at time t = δ+ 1, node d stops
sending new messages to its neighbors. We assume that none of the source nodes send messages to d.

process increment(d)
begin

if w(Z) = 1 then
exit

end
w(Z) := w(Z) + ε
foreach x ∈ N(d) do

send 〈Z, (w(Z))〉 to x
end

end

6

process update(u)
begin

let v ∈ N(u)
let P be a path from v to d
receive 〈P,W(P)〉 from v −→
begin

let Q := (u, v)P
if Q /∈ Pu then continue
if w(P) = w(Q)− ε then

w(Q) := w(P)
let R ∈ Pu be the highest ranked ε-unsaturated path such that tightEnd(R) is φ.
if R 6= φ then

w(R) := w(R) + ε
endif

else if w(P) = w(Q) + ε then
do nothing

else if w(P) = w(Q) + 2ε then
S := tightEnd(Q)
if S = φ then

w(Q) := w(Q) + ε
else

let R ∈ Pu
S be the lowest ranked path with positive weight

if R 6= Q then
w(R) := w(R)− ε
w(Q) := w(Q) + ε

endif
endif

endif
foreach x ∈ N(u) do

send 〈Q,W(Q)〉 and 〈R,W(R)〉 to x
end

end
end

Protocol for the source nodes : Every source node runs the program update(u). As in SPVP,
we assume that update(u) is executed in one atomic step and that the communication channels
are reliable and preserve message order. The guard (receive 〈P,W(P)〉 from v) is activated when
there is an unprocessed message from a neighbor v ∈ N(u). This causes the message to be deleted
from the incoming communication link and processed accordingly. Let Q = (u, v)P be a path
ending in P . If Q /∈ Pu then u continues to the next incoming message. If Q ∈ Pu then u
updates the weights on its preferred paths according to the program. The messages 〈Q,W(Q)〉
and 〈R,W(R)〉 are sent only if the weights w(Q) and w(R) are modified, respectively. Every node
stores the current value of w(Q) for each Q ∈ Pu.

Let Q ∈ Pu be a path from u to d′. Let Q = (u, v)P . The tightend of path Q is the longest
path S such that Q ends in S and

∑
R∈ Pu

S
w(R) = w(S). If no such path exists then the tightend

7

is an empty path, denoted by φ. Given the weights of the preferred paths w(Pu) and W(P),
tightEnd(Q) can be computed locally at the source node u.

In one atomic execution of update(u), the weight of any preferred path is changed by at most ε.
If w(P) = w(Q)− ε then w(Q) is decreased by ε, to preserve the tree-condition. The weight of an
ε-unsaturated path2 (with highest rank and empty tightend) is increased by ε. If w(P) = w(Q)+2ε
and Q has an empty tightend then w(Q) is increased by ε, without changing the weights of the
other paths in Pu. If w(P) = w(Q) + 2ε and Q has a non-empty tightend (say S), then the weight
of the lowest ranked path with positive weight in Pu

S is decreased by ε and w(Q) is increased by ε.
More details of the protocol are presented in the proof of Lemma 4.1.

4.2 Proof of Convergence

Let w(Pu) = {w(P) | P ∈ Pu} and w(P) = {w(Pu) | u ∈ V − {d}}. The network state is
defined as w(P) together with the state of all communication links. A network state is stable if all
communication links are empty. We present the proof of convergence in two steps. In the first step,
we prove that the weights w(P), associated with any stable network state, satisfy the feasibility and
the ε-stability conditions. In the second second step, we prove that our protocol always converges
to a stable network state.

Lemma 4.1. In fractional-PVP, the weights w(P) associated with any stable network state corre-
spond to an ε-stable solution.

Proof. As in SPVP, we use a message processing framework which employs a reliable FIFO queue of
messages for communication between peers. We model logical time t with discrete values 0, 1, 2,
At each discrete time step, one or more nodes with a waiting message runs the update(u) program.
This models the asynchronous nature of the Internet. Every node is eventually activated when
there is an unprocessed message from one of its neighbors. We assume that the program update(u)
is executed in one atomic step. For v ∈ N(u), we define the pipe from v to u at time t, pipe(u⇐
v, t), to be the message queue consisting of messages sent from v to u. Let Q ∈ Pu such that
Q = (u, v)next(Q). Let wt(Q) be the weight of path Q at time t. If node u runs update(u) at
time t, then wt(Q) is the weight of Q at the end of its current execution. If node u did not run
update(u) at time t, then wt(Q) = wt−1(Q).

Let t be the current time. Let 〈next(Q),Wt′(next(Q))〉 be the last message processed from
pipe(u⇐ v, t′) for some t′ < t. LetWt(Q) = (wt(Q),Wt′(next(Q))). LetWt(Pu) = {Wt(Q) | Q ∈
Pu}. We would like to show thatWt(Pu) satisfies the feasibility and ε-stability conditions for all t.
We do this by induction on t. It is easy to see that W0(Pu) satisfies the feasibility and ε-stability
conditions. Let Wt−1(Pu) be the weights at time t − 1. We may assume that they satisfy the
feasibility and ε-stability conditions. We may assume that there is a waiting message from one of
u’s neighbor and update(u) is executed at time t.

Let us look at the execution of update(u) at time t. The node u receives the message 〈P,W(P)〉
from its neighbor v. Let Q = (u, v)P be a path ending in P . If Q /∈ Pu then u continues to the
next incoming message. If Q ∈ Pu then u updates the weights on its preferred paths according to
the program. The messages 〈Q,W(Q)〉 and 〈R,W(R)〉 are sent only if the weights w(Q) and w(R)
are modified, respectively. In one atomic execution of update(u), the weight of any preferred path
is changed by at most ε.

2Let P1 = (u, v)P2. P1 is ε-unsaturated if w(P2)− w(P1) > ε

8

If w(P) = w(Q) − ε then w(Q) is decreased by ε, to preserve the tree-condition. Let R ∈ Pu

be the highest ranked ε-unsaturated path3 such that tightEnd(R) is φ. If R 6= φ then w(R) is
increased by ε to preserve ε-stability condition. Since tightEnd(R) is φ, this does not violate the
tree condition. Since

∑
P∈Pu w(P) is not increased, the unity condition is preserved.

If w(P) = w(Q) + 2ε and Q has an empty tightend then w(Q) is increased by ε (to maintain
the ε-stability condition). Since tightEnd(Q) is φ, tree condition is not violated. Also, since Q
is a path from u to d′, the path Z is not a tightend of Q. Since w(Z) ≤ 1, the unity condition
is preserved. Since the weights of the other paths in Pu are not changed, ε-stability condition is
preserved.

If w(P) = w(Q) + 2ε and Q has a non-empty tightend (say S), then increasing w(Q) would
violate the tree condition. It will violate the unity condition if S = Z. To maintain ε-stability
condition, we need to update the w(Q) by borrowing weight from another path. Let R ∈ Pu

S be the
lowest ranked path with positive weight. If R 6= Q, then ε-stability condition is violated. Decreasing
w(R) by ε and increasing w(Q) by ε would preserve ε-stability. Since R ∈ Pu

S the tree condition is
not violated. Since

∑
P∈Pu w(P) is not increased, the unity condition is maintained.

HenceWt(Pu) satisfies the feasibility and ε-stability conditions at time t, when the source node
u processed an incoming message. By induction this is true for all t. Since the communication
channels are reliable and preserve message order, in the stable network state (no incoming messages)
all the weights on the preferred paths satisfy the feasibility and ε-stability conditions at all the source
nodes.

Theorem 4.2. Fractional-PVP always converges to a stable network state.

Proof. Let m1 be a message sent from v to u ∈ N(v). Let m2 be a message sent from u to N(u).
We say that message m1 triggered m2 if u received m1 from v, updated it weights (according
to the update(u) program) and sent m2 to its neighbors. Note that a single message can trigger
multiple messages. For example, in the program update(u), the messages 〈Q,w(Q)〉 and 〈R,w(R)〉
are triggered by the incoming message 〈P,w(P)〉. The messages sent by the source nodes are always
triggered by an incoming message. The messages sent by the destination node d are not triggered
by any messages.

For v ∈ N(u), we define the pipe from v to u at time t, pipe(u⇐ v, t), to be the message queue
consisting of messages sent from v to u. Let wt(Q) be the weight of path Q at time t. The set of
converging nodes, C ⊆ V , are those nodes u such that for some time t and for all t′ > t, we have
wt′(Q) = wt(Q) for all Q ∈ Pu. The oscillating nodes, denoted O, is the set of nodes in V not in
C, i.e., O = V − C. Note that d, d′ ∈ C. Let us assume that fractional-PVP never converges and
hence O 6= ∅. From the definition of C, there exists a time tc such that for all t > tc and for all
u ∈ C, wt(Q) = wtc(Q) for all Q ∈ Pu. If u ∈ C and x ∈ N(u), then after time tc no new messages
are placed into pipe(x⇐ u, t). Hence there is a time tf > tc such that for all times t > tf all such
messages from nodes in C have been flushed from all communication links.

Let m2 be triggered by m1. Node u sends m2 in response to m1 only if u detects an ε-unsaturated
path while executing update(u). In other words, if there are no ε-unsaturated paths in the network
then the protocol converges. Let u ∈ O, be an oscillating node. We may assume that there exists
at least one path P ∈ Pu, such that w(P) takes at least two different values infinitely often and P
is ε-unsaturated infinitely often. Let w(P) be assigned k different values infinitely often i.e., w(P)

3Let P1 = (u, v)P2. P1 is ε-unsaturated if w(P2)− w(P1) > ε

9

is assigned values αε and (α+ k)ε infinitely often (for some α > 0). This can happen if one of the
following is true :

• There exists a path Q such that λu(Q) ≥ λu(P) and w(Q) is assigned values βε and (β+k+1)ε
infinitely often (for some β > 0).

• There exists a path Q such that P ends in Q and w(Q) is assigned values βε and (β+ k+ 1)ε
infinitely often (for some β > 0).

In both cases there is a path Q such that w(Q) is assigned k+ 1 different values infinitely often.
Applying the above argument to w(Q), we find a path R that is assigned k + 2 different values
infinitely often. We can continue this argument for R and so on. Since δ and |V | are finite and all
the preferred paths are simple, this leads to a contradiction. This implies that none of the weights
take two different values infinitely often. Hence, fractional-PVP converges to a stable network state
in finite time.

Corollary 4.3. Fractional-PVP always converges to an ε-stable solution of an FSPP instance, for
any given ε > 0.

5 Conclusion

We defined ε-stable solution of an FSPP instance and presented a distributed protocol that always
converges to an ε-stable solution of an FSPP instance, for any given ε > 0. We defined a game-
theoretic model for FSPP and presented a relation between ε-Nash and ε-stable solution.

Acknowledgements : I am grateful to H. Venkateswaran for many helpful and motivating
discussions throughout the course of this project. I would like to thank Milena Mihail for initial
discussions on BGP. This research is partially funded by ARC Thinktank Fellowship at College of
Computing of Georgia Institute of Technology. I would like to thank Gordon Wilfong and Penny
Haxell for sending a preprint of their paper [5]. I would like to thank Gordon Wilfong, Michael
Schapira and Vijay Ramachandran for helpful discussions during a recent DIMACS workshop4,
where this research was presented as work-in-progress. I would like to thank Gordon Wilfong for
helpful comments on initial drafts of this paper.

References

[1] R.J. Aumann. Acceptable points in general cooperative n-person games. In: A.W. Tucker,
R.D.Luce (Eds.), Contributions to the Theory of Games, Annals of Mathematical Studies 40,
Princeton University Press, Princeton, New Jersey, 1959.

[2] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently Safe Backup Routing with
BGP. In 20th IEEE INFOCOM, pages 547–556, 2001.

[3] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination.
IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

4DIMACS/DyDAn Workshop on Secure Internet Routing, March 24 - 26, 2008, Rutgers University

10

[4] T. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdomain routing.
IEEE/ACM Transactions on Networking, 10(2):232–243, 2002.

[5] P. E. Haxell and G. T. Wilfong. A fractional model of the border gateway protocol. SODA,
2008.

[6] Geoff Huston. Interconnection, Peering and Settlements. In Internet Global Summit (INET).
The Internet Society, 1999.

[7] Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games. STOC,
2008.

[8] Y. Rekhter and T. Li. A border gateway protocol. RFC 1771 (bgp version 4). 1995.

[9] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in inter-domain routing.
ISI technical report 96-631, USC/Information Sciences Institute, 1996.

[10] H. Peyton Young. Cost allocation, demand revelation, and core implementation. Mathematical
Social Sciences, 36:213228, 1998.

11

